“Tweet” your learning!

- www.twitter.com or twitter app (for your phone)

- Follow us @cgi2015

 #cgiJourney

 #cgi2015la

 #cgimath
Let’s Talk About Talk

CGI National Conference

Melissa Canham and Glenda Martinez

June 26, 2015
Today’s Objective

- Teachers will understand the importance of teacher moves that will increase the levels of student engagement.
Levels of Classroom Discourse

<table>
<thead>
<tr>
<th>Level</th>
<th>Teacher Role</th>
<th>Questioning</th>
<th>Explaining Mathematical Thinking</th>
<th>Mathematical Representations</th>
<th>Building Student Responsibility within the Community</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Teacher is at the front of the room and dominates conversation.</td>
<td>Teacher is only questions. Questions serve to keep students listening to teacher. Students give short answers and respond to teacher.</td>
<td>Teacher questions focus on correctness. Students provide short answer-focused responses. Teacher may fill in an explanation.</td>
<td>Representations are missing, or teacher students keeping ideas to themselves or just providing answers when asked.</td>
<td>Culture supports students keeping ideas to themselves or just providing answers when asked.</td>
</tr>
<tr>
<td>2</td>
<td>Teacher encourages students to ask questions of one another.</td>
<td>Student-to-student talk & student initiations. Students ask questions to contrast strategies. Many questions ask "why" and call for justification. Teacher follows student explanations closely. Teacher may still guide discourse.</td>
<td>Students begin to defend their answers, to keep students listening to teacher. Students ask questions to contrast strategies. Students defend and justify their answers with little prompting from the teacher.</td>
<td>Students follow and help shape the descriptions of others' math thinking through math drawings and may suggest edits in others' math drawings.</td>
<td>Students believe that they are math learners that their ideas and ideas of their classmates are important. They can contribute significantly.</td>
</tr>
<tr>
<td>3</td>
<td>Students carry the conversation themselves. Teacher only guides from the periphery of the conversation. Teacher waits for students to clarify thinking of others.</td>
<td>Students ask questions to contrast strategies. Students defend and justify their answers with little prompting from the teacher.</td>
<td>Students follow and help shape the descriptions of others' math thinking through math drawings and may suggest edits in others' math drawings.</td>
<td>Students believe that they are math learners that their ideas and ideas of their classmates are important. They can contribute significantly.</td>
<td>Students believe that they are math learners that their ideas and ideas of their classmates are important. They can contribute significantly.</td>
</tr>
</tbody>
</table>

Fig. 11. Levels of classroom discourse. From Hufford-Ackles, Fuson, and Sherin (2014), table 1.

Time to Reflect!
Orchestrating Classroom Discourse

- **Design of Instruction**: writing or selecting a problem or task

- **Anticipating** likely student responses to cognitively demanding mathematical tasks

- **Monitoring** students’ responses to the tasks during the explore phase

- **Selecting** particular students to present their mathematical responses during the discuss-and-summarize phase

- Purposefully **sequencing** the student responses that will be displayed

- Helping the class **make mathematical connections** between different students’ responses and between students’ responses and key ideas

Purposeful Pedagogy Model (TDG; Cognitively Guided Instruction) and Orchestrating Classroom Discourse (Stein et al.)
What strategies do you use to keep your students engaged during the share out?
While viewing…

Take note of:

- What questions/moves is the teacher doing to keep students engaged and to help students make mathematical connections?

- How do the students respond?
What Did You Notice?
Your Turn

The zookeeper has 4 cups of frog food. His frog eats $\frac{1}{3}$ cup of food each day. How long can he feed his frog before the food runs out?
Anticipating Likely Student Responses

• Considering a 4th grade class, how do you think students might approach this task?
 ◦ How might students interpret the problem?
 ◦ What strategies, both correct and incorrect, might students use?
 ◦ As a teacher, what strategies would you like your students to learn for this problem?
Number Yourselves 1 – 5

1. Teacher – practice asking questions to keep the students making mathematical connections

2. Student – you will explain the student strategy provided

3. Student

4. Student

5. Student
Reflection

What ideas from this session are you planning on implementing in your classroom?
Thank You!

Melissa Canham: mcanham@dusd.net

Glenda Martinez: gmartinez@dusd.net

DUSD CGI Website: www.dusd.net/cgi